1. List the four main sources of drug products.

Plant; Animal; Minerals; Synthetic (Chemicals)

2. Describe how drugs are classified.

Utilizes a number and a letter for each new drug.

Numerical Classification (Chemical)

Assigned a number 1-7

Letter Classification (Treatment or Therapeutic Potential)

Other Classifications

3. List the authoritative sources for drug information.

American Medical Association (AMA) Drug Evaluation; Hospital Formulary; Medication package inserts; Physician's Desk Reference (PDR)

- 4. List legislative acts controlling drug use and abuse in the United States.
 - a. The Pure Food & Drug Act of 1906
 - i. Enacted to improve the quality and labeling of drugs.
 - b. Harrison Narcotic Act of 1914
 - i. Limited the indiscriminant use of addicting drugs by regulating the importation, manufacture, sale, and use of opium, cocaine, and their compounds or derivatives.
 - c. The Federal Food, Drug and Cosmetic Act of 1938.
 - Empowered the FDA to pre-market safety standards for drugs. Amended in 1951 by the *Durham-Humphrey Amendments* to require written or verbal prescriptions from a physician to dispense certain drugs.
 - d. Comprehensive Drug Abuse Prevention and Control Act. Of 1970. (AKA Controlled Substances Act.
 - Most recent major federal legislation affecting drug sale and use. Replaced the Harrison Narcotic Act of 1914
- 5. Differentiate among Schedule I, II, III, IV, and V substances.
 - e. Schedule I
 - i. High abuse potential. No accepted medical indications. Examples: Heroin, LSD
 - f. Schedule II
 - i. High abuse potential. Accepted medical indications Examples: Opium, cocaine.
 - g. Schedule III
 - i. Less abuse potential than schedule II or II; may lead to moderate or low physical dependence.
 - ii. Limited opioid amount or combined with non-controlled substances.
 - 1. Examples: Vicodin, Tylenol w/ codeine.
 - h. Schedule IV
 - Low abuse potential compared to schedule III. Limited psychosocial and/or physical dependence. Examples: Diazepam, lorazepam, phenobarbital.

i. Schedule V

- Lower abuse potential than schedule IV. May lead to psychosocial and/or physical dependence. Limited amounts opioids; often for cough or diarrhea.
- 6. Discuss special consideration in drug treatment with regard to pregnant, pediatric, and geriatric patients.

Pediatric Patients

- ii. Neonates (Infants from birth to 4 weeks) metabolism and excretion may be impaired.
- iii. Children up to one year have diminished plasma protein concentrations.
- iv. Results in higher free drug availability with drugs that bind to proteins.
- v. Many factors cause a pediatrics drug function to differ radically from an adults.

j. Geriatric Patients

- i. Common physiological effects of aging:
 - 1. Decreased cardiac output
 - 2. Decreased renal function
 - 3. Decreased brain mass
 - 4. Decreased total body water
 - 5. Decreased body fat
 - 6. Decreased serum albumin
 - 7. Decreased respiratory capacity
- ii. These changes can lead to:
 - 1. Altered pharmacodynamics & pharmacokinetics.
 - 2. Decreased rates of metabolism and excretion.
 - 3. Decreased protein binding because of decrease level of serum albumin.
- iii. Result Dosages may have to be decreased.
- iv. Elderly also suffer from multiple disease processes.
- v. May be on chronic medications that can affect emergency medications.

k. Pregnant Patients

- i. Anatomical & Physiological changes.
 - 1. Increased cardiac output
 - 2. Increased heart rate
 - 3. Increased blood volume (up to 45%)
 - 4. Decreased protein binding
 - 5. Decreased hepatic metabolism
 - 6. Decreased blood pressure
- ii. Drug has the potential to cross the placenta and affect the fetus.
- iii. Drug therapy can affect a breast-feeding infant.
- 7. Discuss the paramedic's responsibilities and scope of management pertinent to the administration of medications.

- I. Paramedics are personally, legally, morally and ethically responsible for the safe administration of medications.
 - i. Know the precautions and contraindications for all medications you administer.
 - ii. Practice proper technique.
 - iii. Know how to observe and document drug effects.
 - iv. Maintain a current knowledge in Pharmacology.
 - v. Establish and maintain professional relationships with other health care providers.
 - vi. Understand the pharmacokinetics and pharmacodynamics.
 - vii. Have current medication references available.
 - viii. Take careful drug histories including:
 - 1. Name, strength, and daily dose of prescribed drugs
 - 2. Over-the-counter drugs
 - 3. Vitamins
 - 4. Herbal medications; Folk-medicine or folk remedies
 - 5. Allergies
 - ix. Evaluate the compliance, dosage, and adverse reactions.
 - x. Consult with medical direction when appropriate
- 8. Describe general properties of drugs.
- 9. Describe mechanisms of drug action.
- 10. Differentiate the phases of drug activity, including the pharmaceutical, pharmacokinetic, and pharmacodynamic phases.

m. Pharmacokinetics

- Strictly defined, pharmacokinetics is the study of the basic processes that determine the duration and intensity of a drug's effect.
- ii. Pharmacokinetic Processes
- iii. Absorption
- iv. Distribution
- v. Biotransformation
- vi. Elimination
- n. Physiology of Transport
 - i. Active transport
 - ii. Carrier mediated diffusion,
 - 1. AKA facilitated diffusion
 - iii. Passive transport
 - iv. Diffusion
 - v. Osmosis
 - vi. Filtration
- o. Absorption
 - The process of movement of a drug from the site of application into the body and into the extra-cellular compartment.
 - 1. Affected by many factors including:
 - a. Solubility of the drug

- b. Concentration of the drug
- c. pH of the drug (Actually the pH of the patient has more to do with this.)
- d. Site of absorption
- e. Absorbing surface area
- f. Blood supply to the supply to the site of absorption
- g. Bioavailability
 - Comparison of Rates of Drug Absorption of Various Routes of Administration

p. Distribution

- i. The process whereby a drug is transported from the site of absorption to the site of action.
 - 1. Affected by several factors:
 - a. Cardiovascular function
 - b. Regional blood flow
 - c. Drug storage reservoirs
 - d. Physiological barriers
 - e. blood-brain barrier
 - f. Placental barrier

q. Biotransformation

- i. A special name for metabolism.
- ii. Metabolism
- iii. Has one of two effects on drugs.
 - 1. It can transform the drug into a more or less active metabolite.
 - 2. It can make the drug more water soluble (or less lipid soluble) to facilitate elimination.
- iv. Biotransformation process:takes place in:
 - 1. The liver.
 - 2. Microsomal enzymes in the endoplasmic reticula of hepatocytes (liver cells).
 - 3. Kidney Lung and GI tract
- v. First-pass effect.
 - 1. Blood supply from the GI Tract passes through the liver before moving on through the systemic circulation.
 - 2. First pass may completely inactivate many drugs.
 - 3. These drugs must be given IV rather than orally.
- vi. Biotransformation begins immediately following introduction of the drug.
 - 1. Certain drugs are rapidly transformed.
 - 2. Epinephrine is active as administered and rapidly metabolized to inactive forms.

- vii. The livers microsomal enzymes react with drugs in two ways:
 - 1. Phase-I (non-synthetic reactions.)
 - a. Most often oxidize the parent drug.
 - b. May reduce or hydrolyze the drug.
 - 2. Phase II (synthetic reactions.)
 - a. AKA conjugation reactions, combine the prodrug or its metabolites with an endogenous chemical, usually making the drug more polar and easier to excrete.

r. Elimination

- Refers to movement of a drug or its metabolites from the tissues back into the circulation and to the organs of excretion.
- ii. Eliminated in original form or as metabolites.
- iii. Elimination is affected by:
 - 1. Drug half-life
 - 2. Accumulation.
 - 3. Clearance
- s. Onset, peak, and duration.
- t. Drug Routes
 - i. Enteral.
 - 1. Enteral Routes
 - a. Oral (PO)
 - b. Orogastric / nasogastric tube (OG/NG)
 - c. Sublingual (SL)
 - d. Buccal
 - e. Rectal (PR)
 - 2. Advantages
 - a. Simple; safe
 - b. Generally less expensive
 - c. Low potential for infection.
 - 3. Disadvantages
 - a. Slow rate of onset
 - b. Cannot be given to unconscious of nauseated patients.
 - c. Absorbed dosage may vary significantly because of actions of digestive enzymes and the condition of the intestinal tract.
 - ii. Parenteral Routes.
 - 1. Parenteral Routes
 - a. Topical
 - b. Intradermal
 - c. Subcutaneous
 - d. Intramuscular
 - e. Intramuscular

- f. Intravenous
- g. Endotracheal
- h. Sublingual injection
- i. Intracardiac
- j. Intraosseous
- k. Inhalation
- I. Umbilical
- m. Vaginal
- u. Drug Forms
 - i. Solid
 - ii. Pills
 - iii. Powders
 - iv. Tablets
 - v. Suppositories
 - vi. Capsules
 - vii. Liquid
 - viii. Solutions
 - ix. Tinctures
 - x. Suspensions
 - xi. Emulsions
 - xii. Spirits
 - xiii. Elixirs
 - xiv. Syrups

2. Pharmacodynamics

- a. Is the study of mechanisms by which specific drug dosages act to produce biochemical or physiological changes in the body.
- b. Actions of Drugs
 - i. Can act in four different ways:
 - 1. Bind to a receptor site.
 - 2. Change the physical properties of cells.
 - 3. Chemically combine with other chemicals.
 - 4. Alter a normal metabolic pathway...
 - ii. Binding To A Receptor Site
 - 1. A receptor is a specialized protein that combines with a drug resulting in a biochemical effect.
 - 2. Affinity
 - a. Force of attraction between a drug and a receptor.
 - 3. Efficacy
 - a. A drugs ability to cause the expected response.
 - iii. Second messenger:
 - Chemical that participates in complex cascading reactions that eventually cause a drug's desired effect.
 - iv. Down-regulation

- 1. Binding of a drug or hormone to a target cell receptor that causes the number of receptors to decrease.
- v. Up-regulation
 - 1. A drug causes the formation of more receptors than normal.
- vi. Stimulation of A Receptor Site
 - 1. Chemicals that stimulate fall into two broad categories:
 - a. Agonist
 - i. Causes it to initiate the expected response.
 - b. Antagonist
 - i. Causes the drug not to initiate the expected response.
 - c. Some drugs do both.
 - i. Called agonist-antagonist AKA Partial agonist.
 - 2. Competitive antagonism:
 - a. One drug binds to a receptor and causes the expected effect while also blocking another drug from triggering the same receptor.
 - 3. Non-Competitive antagonism:
 - a. The binding of an antagonist causes a deformity of the binding site that prevents an agonist from fitting and binding.
 - 4. Irreversible antagonism:
 - a. A competitive antagonist permanently binds with a receptor site.
- vii. Other Actions of Drugs
 - 1. Changing Physical Properties:
 - a. Osmotic balances across membranes are good examples.
 - 2. Chemically combining with other substances.
 - a. Drugs that participate in chemical reactions that change the chemical nature of their substrates.
 - 3. Altering a normal metabolic pathway:
 - a. The anticipated product will not form of, if formed, will be substantially or completely inactive.
- c. Responses to Drug Administration
 - i. Side effect
 - ii. Allergic reaction
 - iii. Idiosyncrasy.
 - iv. Tolerance
 - v. Cross Tolerance

- vi. Tachyphylaxis
- vii. Cumulative effect
- viii. Drug dependence.
- ix. Drug interaction
- x. Drug antagonism
- xi. Summation
- xii. Synergism
- xiii. Potentiation
- xiv. Interference
- d. Drug Response Relationship
 - i. Correlates different amounts of drug to the resultant clinical response.
 - ii. Plasma-level profile
 - 1. Describes the lengths of onset, duration, and termination of action, as well as the drug's minimum effective concentration and toxic levels.
 - iii. Factors Altering Drug Response
 - 1. Age
 - 2. Body Mass
 - 3. Sex
 - 4. Environment
 - 5. Time of Administration
 - 6. Pathologic state
 - 7. Genetic factors
 - 8. Psychological factors
- e. Drug Interactions
 - i. Variables that may cause drug-drug interactions:
 - 1. One drug could alter the rate of intestinal absorption.
 - 2. The two drugs could compete for plasma protein binding, resulting in one's accumulation at the other's expense.
 - 3. One drug could alter the other's metabolism, thus increasing or decreasing either's bioavailability.
 - 4. One drug's action at a receptor site may be antagonistic or synergistic to another's.
 - 5. One drug could alter the other's rate of excretion through the kidneys.
 - 6. One drug could alter the balance of electrolytes necessary for the other drug's expected result.
- 11. Assess the pathophysiology of a patient's condition by identifying classifications of drugs.
- 12. Integrate pathophysiological principles of pharmacology with patient assessment.
- 13. Synthesize patient history information and assessment findings to form a field impression.

- 14. Synthesize a field impression to implement a pharmacologic management plan.
- 15. Discuss the "six rights" of drug administration and correlate these with the principles of medication administration.
- 16. Describe the indications, equipment needed, techniques used, precautions, and general principles of administering medications by the gastric tube and rectally.
- 17. Differentiate among the different percutaneous routes of medication administration.
- 18. Integrate pathophysiological principles of medication administration with patient management.
- 19. Formulate a pharmacologic management plan for medication administration.